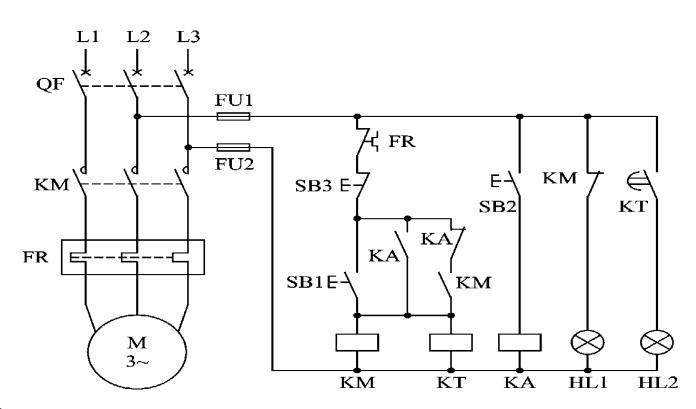


项目四 电动机基本控制电路的PLC控制



任务一 三相异步电动机单向连续带点动的PLC控制

A 》 任务内容

如图 4-1 为三相异步电动机单向连续带点动控制的继电器接触器控制电路,该电路的电气控制要求:

按下 SB1 时电动机 M 单向连续运行,按下 SB2 时电动机 M 单向点动运行。

SB3 为停止按钮, FR 为热继电器。按下 SB3 或 FR 动作电动机 M 均停止运行。电动机 M 不运行时绿灯 HL1 指示,启动并连续运行 10 秒中后红灯 HL2 指示。

制实现?

1. 分析任务, 提出问题

分析

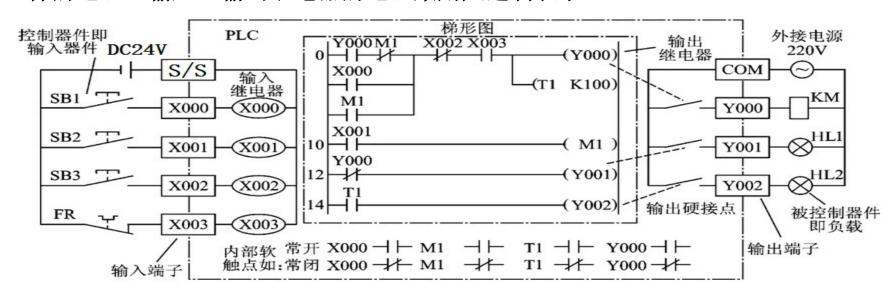
- 如何将给出的电动机继电器接触器控制电路用PLC控制来 实现呢?
- PLC控制取代原电路的哪一部分?

对于刚开始接触 PLC 设计的电气技术技术人员来说,接触继电器法是一种容易学习与接受的编程方法.

2. 什么是接触器 - 继电器法编程思想?

根据确定的 PLC 输入信号、输出信号及中间逻辑信号,将现有的接触器 - 继电器电路上控制器件换成对应的输入点,将现有的接触器 - 继电器电路上的被控制器件换成对应的输出点,将中间继电器及时间继电器用 PLC 的辅助继电器 M 和定时器 T 代替,初步将接触器 - 继电器电路转换成 PLC 梯形图。

- ▶ 控制器件:作为 PLC 的输入信号
- ▶ 被控器件:作为 PLC 的输出信号
- ▶ 其它内部软元件: PLC 的辅助继电器 M 、定时器 T 、计数器等


1. 输入继电器/输出继电器

输入端是 PLC 接收外部开关信号的端口,与内部输入继电器之间是 采用光电绝缘电子继电器连接的,有无数个常开、常闭触点,可以无限 次使用,但输入继电器不能用程序来驱动。

输出端是 PLC 向外部负载发送信号的端口,与内部输出继电器(如继电器、双向晶闸管、晶体管)连接,输出继电器也有无数个常开、常闭触点,可以无限次使用。可编程控制器内部输入输出继电器与外部端子的功能与作用见图 4-2 所示。

▶ 知识点一PLC 软元件

PLC 软元件的编号分为两部分,第一部分用一个字母代表功能,如输入继电器用"X"表示,输出继电器用"Y"表示;第二部分用数字表示该类软组件的地址,输入、输出继电器的地址采用八进制表示。

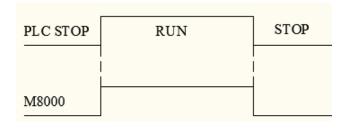
知识点一PLC 软元件

1)辅助继电器(M)

 FX_{3U} 系列 PLC 的辅助继电器有通用辅助继电器、断电保持辅助继电器和特殊辅助继电器。辅助继电器的元件序号采用十进制。

• 通用辅助继电器 (MO~M499, 共500点)

如果 PLC 运行时电源突然中断,输出继电器和 MO~M499 将全部变为 OFF。若电源再次接通,除了因外部输入信号变为 ON 以外,其余的仍保持 OFF 状态。


• 断电保持辅助继电器 (M500~ M7679)

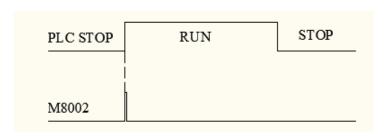
 FX_{3U} 系列 PLC 在运行中若发生断电,输入继电器和通用辅助继电器全部成为断开状态,上电后,这些状态不能恢复。某些控制系统要求记忆电源中断瞬时的状态,重新通电后再现其状态, $M500\sim M3071$ 可以用于这种场合。其中 $M500\sim M1023$,通过参数可以更改保持 / 非保持的设定; M1024 $^{\sim}$ M7679 为固定保持用。

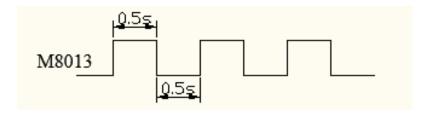
特殊辅助继电器 (M8000~M8511)

FX₃₁₁ 内有特殊辅助继电器用来表示 PLC 的某些状态,提供时钟脉冲和标志 (如进位、借位标志等),设定 PLC 的运行方式,或者用于步进顺控,禁止中断 、设定计数器的计数方式等。

(1) 只能利用其触点的特殊辅助继电器 此类辅助继电器的线圈由 PLC 的系统程序来驱动,用户程序只可使用其触点。 如: M8000: 运行监视:

▶ 知识点一PLC 软元件


• 特殊辅助继电器 (M8000~M8511)


M8002: 初始化脉冲;

M8011~M8014 分别是 10 ms , 100 ms 、

1 s和1min时钟脉冲。

其中, M8013 被经常用于闪烁电路。

② 线圈驱动型特殊辅助继电器

这类辅助继电器由用户程序驱动其线圈,使 PLC 执行特定的操作。

如: M8033 的线圈"通电"时, PLC 由 RUN 进入 STOP 状态后,映像寄存器与数据寄存器中的内容保持不变。

M8034 的线圈"通电"时,全部输出被禁止。

知识点一PLC 软元件

2) 定时器(T)

定时器相当于继电器电路中的时间继电器,可在程序中用于延时控制。 FX_{3U} 系列可编程控制器中的定时器 [T] 有四种类型,其地址编号按十进制数分配。

设定值可 100ms型	以用 <mark>常数 K 进</mark> 行 10ms型	设定,也可以用 lms型	数据寄存器(D) 1ms型积算型	的内容来设定。 100ms积算型
0.1~3276.7秒	0.01~327.67秒	0.001~32.767秒	0.001~32.767秒	0.1~3276.7秒
T0~T199 200 点 其中: T192~ T199 用于子程序	T200~T245 46点	T256~T511 256点	T246~T249 4点 执行中断电池备用	T250~T255 6点 电池备用

知识点一PLC 软元件

通用型定时器 T0~T245 ,T256~T511

通用型定时器的工作原理图如图 4-3 (a) 所示,通用型定时器没有保持功能,在输入电路斯开或停电时复位(清零)。

积算定时器 T246~T255

积算定时器工作原理如图 4-3 (b) 所示。当定时器的驱动输入 X1 接通时, T251 的当前值计数器开始累积 100ms 的时钟脉冲的个数,当该值与设定值 K355 相等时,定时器的输出触点 T251 接通。当输入 X1 断开或系统停电时,当前值可保持,输入 X1 再接通或复电时,计数在原有值的基础上继续进行。当累积时间为 $t1+t2=(0.1\times500)$ s=50s 时,输出触点动作。当输入 X2 接通时,计数器复位,输出触点也复位。

>>

知识点一 PLC 软元件

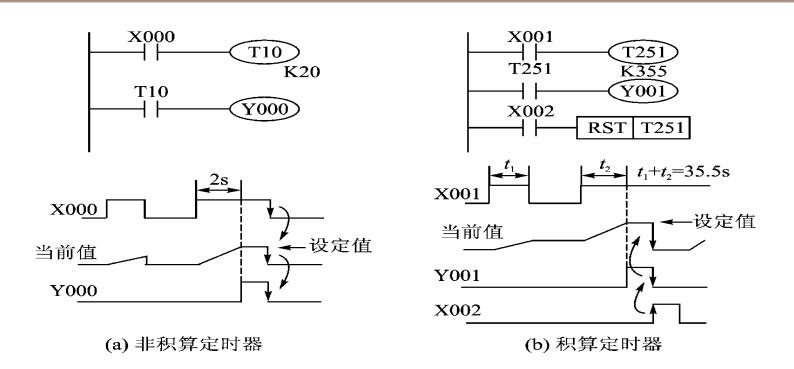


图 4-3 定时器的工作原理

知识点一PLC 软元件

3) 计数器(C)

内部计数器有 16 位增计数器和 32 位增 / 减双向计数器两类,它们又可分为普通用途和停电保持用的两种计数器,其地址以十进制数分配。不用作计数的计数器也可作为数据寄存器使用。

设定值可以用常数 K 进行设定,也可以用数据寄存器(D)的内容来设定。

	数型计数器 ·32767)	32 位增 / 减型双向计数器 (-2, 147, 483, 648~+2, 147		
普通用途	停电保持型	·····································	647) 停电保持型	
C0~C99 100 点	C100~C199 100点	C200~C219 20 点	C220~234 15 点	

知识点—PLC 软元件

• 16 位加计数器

16 位加计数器的工作过程如图 4-5 所示,通用型定时器没有保持功能,在输入电路斯开或停电时复位(清零)。

图中 X2 的常开触点接通后,C0 被复位,它对应的位存储单元被置为"0",它的常开触点断开,常闭触点接通,同时计数器当前值被置为"0"。Y0 与 M8013 逻辑与的结果作为计数输入信号,当计数器的复位输入电路断开,计数输入上升沿到来时,计数器的当前值加"1",在11个计数脉冲之后,C0 的当前值等于设定值 11,它对应的位存储单元的内容被置"1",其常开触点接通,常闭触点断开。再来计数脉冲时,当前值不变,直到复位信号到来,计数器被复位.

▶ 知识点一PLC 软元件

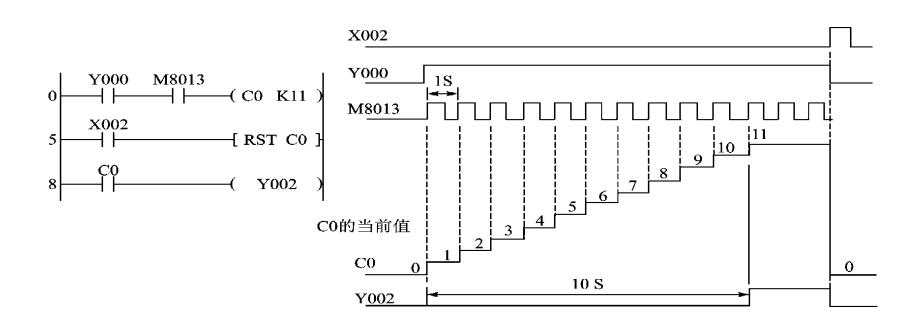


图 4-5 16 位计数器工作示意图

32 位加/减计数器

32 位设定值存放在元件号相连的两个数据寄存器中。如果指定的寄存器为 D0,则设定值存放在 D1 和 D0 中。

32 位加 / 减计数器 C200~C234 的加 / 减计数方式由特殊辅助继电器 M8200~M8234 设定。特殊辅助继电器为 ON 时,对应的计数器为减计数;反之为加计数。图 4-6 中 C200 的设定值为 -5 ,当 X12 输入断开, M8200 线圈断开时,对应的计数器 C200 进行加计数。当当前值计数到 5 时, X12 输入接通, M8200 线圈通电,对应的计数器 C200 进行减计数。当当前值〈-5 时. 计数器的输出触点为 OFF。当复位输入 X13 的常开触点接通时, C200 被复位,其常开触点断开,常闭触点接通。

→ 知识点一PLC 软元件

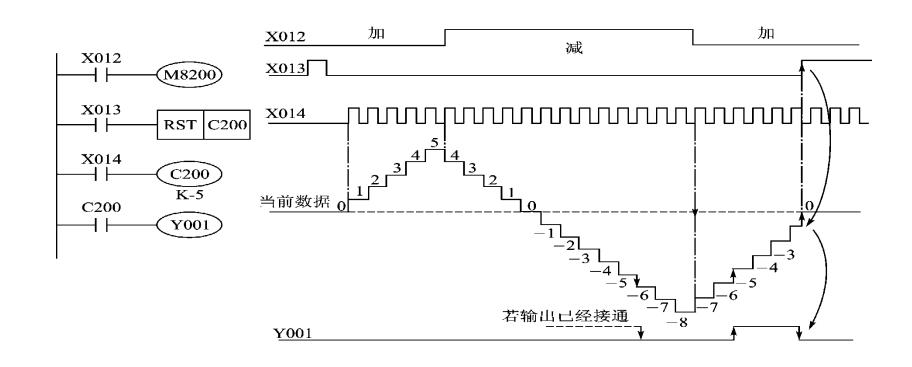


图 4-6 32 位增减计数器的工作过程

1. 选择 PLC , 并分配软元件地址

本任务中控制器件 SB1、SB2、SB3、FR作为PLC的输入信号,用PLC的输入继电器表示;被控制器件接触器 KM 及指示灯 HL1、HL2作为PLC的输出控制对象,用PLC输出继电器表示。由此可知,本任务中输入信号有4个,输出信号有3个,PLC输出所驱动的对象是接触器线圈和指示灯,它们的额定电压均为交流220V,因此选用三菱 FX_{3U}-16MR/ES 的 PLC可以满足任务要求。

1. 选择 PLC,并分配软元件地址

输入信号			输出信号		
名称	代号	输入点编号	名称	代号	输出点编号
连续启动按钮 (常开触点)	SB1	X0	接触器	KM	Y0
点动按钮 (常开触点)	SB2	X1	停止运行指示灯	HL1	Y1
停止按钮(常开触点)	SB3	X2	运行指示灯	HL2	Y2
热继电器 (常闭触点)	FR	X3			

	其他机内器件					
名称	代号	内部元件编号	名称	代号	内部元件编号	
时间继电器	KT	T1	中间继电器	KA	M1	

2. 设计 PLC 接线图

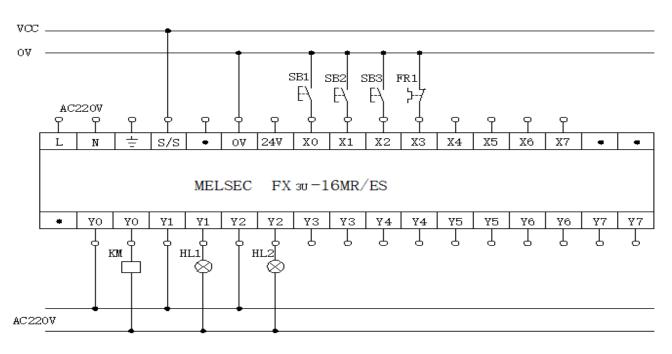


图 4-7 三相异步电动机单向连续带点动 PLC 控制 I/O 端口接线图

C 》 任务实施

3. 设计 PLC 梯形图 图 4-1 电动机单向连续带点动的的继电接触器控制电路图可直接"翻译"成 PLC 控制的梯形图如图 4-8(a) 所示,经简化和修改后,得到如图 4-7(b) 所示的梯形图。

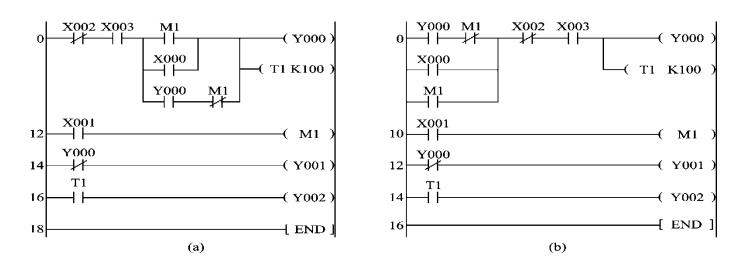


图 4-7 三相异步电动机单向连续带点动 PLC 控制梯形图

》 继电接触器电路转换 PLC 程序设计法

继电接触器电路转换法——根据所给出的继电接触器控制原理图,用 PLC 对应的符号和功能相当的器件,把原来的继电接触器电路直接"翻译"成梯形图程序的设计方法。关键要抓住继电接触器控制电路和 PLC 梯形图之间——对应关系,即控制功能、逻辑功能的对应、及继电器硬件元件和 PLC 软元件的对应。

•继电接触器电路转换法的一般步骤如下:

- 1)分析现有设备的继电接触器电路,弄清电路的工作原理及设备的动作情况。
- 2)确定 PLC 的输入信号和输出信号,画出 PLC 的端口接线图。
- 3)确定PLC梯形图中的其它软元件。
- 4)根据上述对应关系画出 PLC 梯形图。
- 5)根据梯形图的编程规则,进一步优化梯形图。

知识点——基本指令

※ 逻辑取及线圈驱动指令 (LD/LDI/OUT)

LD:取指令,用于与母线连接的常开触点,或触点组开始的常开触点。

LDI:取反指令,用于与母线连接的常闭触点,或触点组开始的常闭触点。

OUT:线圈驱动指令,用于驱动 PLC 内部软元件线圈的输出指令。

※ 触点串联指令 (AND/ANI)

AND:与指令,用于串联单个常开触点。 ANI:与非指令,用于串联单个常闭触点。

※ 触点并联指令(OR/ORI)

OR:或指令,用于并联单个常开触点。 ORI:或非指令,用于并联单个常闭触点。

• LD/LDI/OUT / AND/ANI /AND 和 ANI 指令的应用与梯形图表示如图 4-8 所示。

>>

知识点——基本指令

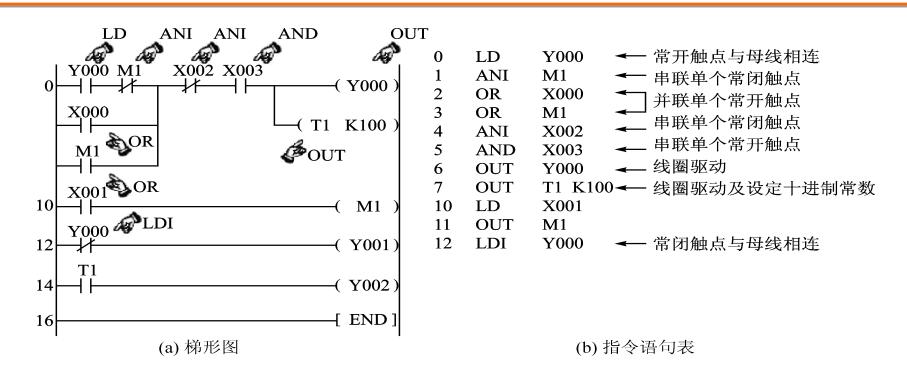


图 4-9 LD、OUT等基本指令的应用与梯形图表示

>>

知识点——基本指令

※ 电路块的并联与并联指令 (ORB/ANB)

ORB:块或指令,用于电路块的并联连接。 ANB:块与指令,用于电路块的串联连接。

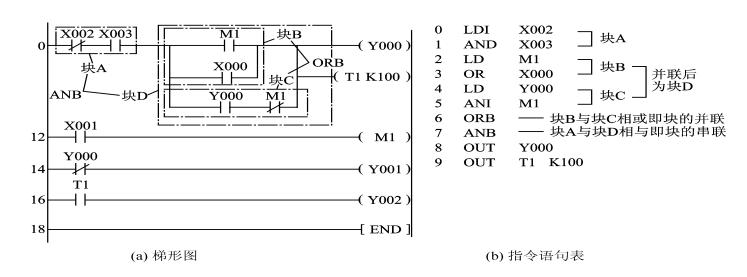


图 4-10 ORB 和 ANB 指令的应用与梯形图表示

• 梯形图中元件的触点不能接在线圈的右边,并且线圈与左母线必须经过触点连接,而不能直接相连。

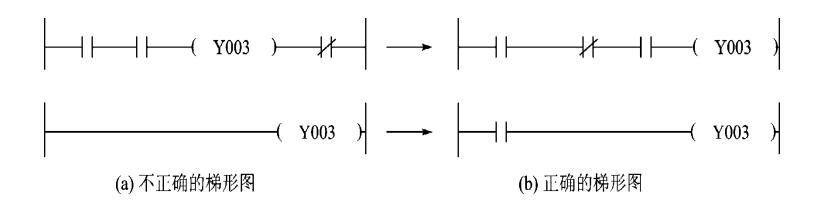
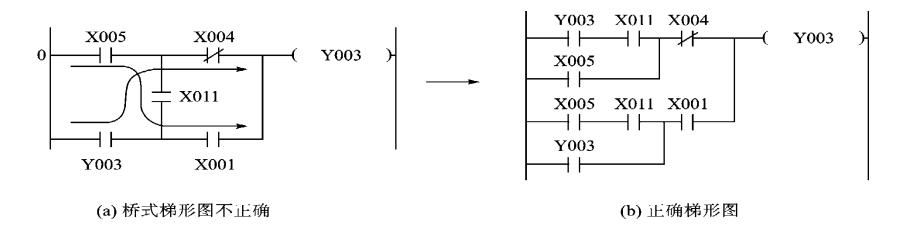
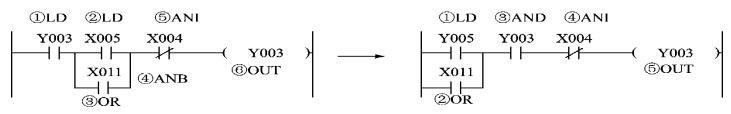


图 4-11

• 在梯形图中没有实际的电流流动,所谓的"能流"只能从左到右、从上到下单向"流动"。因此,如图 4-12 (a) 所示的桥式电路即触点在垂直线上的电路是不可编程的,必须按逻辑功能作等效变换。




图 4-12

• 多个电路块并联时,应将触点最多的支路放在梯形图的最上面,如图 4-13(a) 所示;有多个并联回路串联时,应将触点最多的并联回路安排在梯形图的左边,如图 4-13(b) 所示。

(a) 串联触点多的电路块写在上面

(b) 并联电路多的尽量靠近左侧母线

• 如图 4-14 所示,不包含触点的分支应放在垂直线上,不可水平设置,

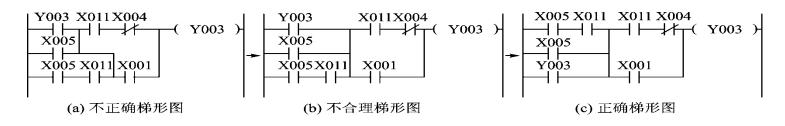
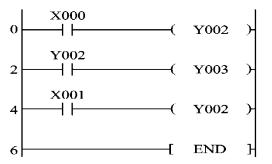
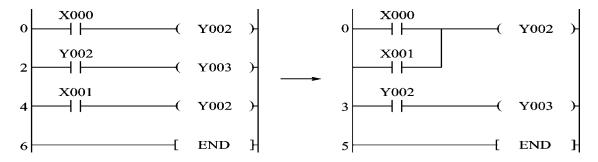



图 4-14

• 在同一个梯形图中,如果同一元件的线圈被使用两次或两次以上,称为双线圈输出。而 PLC 的梯形图编制规则规定:一个线圈在梯形图中只能出现一次,若程序中有双线圈输出时,前面的输出无效,最后一次输出才是有效的,如图 4-15 所示。因此当同一程序中满足某个线圈的驱动条件较多时,应将程序作适当处理后,集中表达,如图 4-15 所示的梯形图可改为图 4-16 所示的梯形图。

若输入信号为X000=ON,X001=OFF



输出结果Y002=OFF,Y003=ON

该梯形图中,Y002出现了两次输出的情况 当程序运行时,第一次的Y002因X000=ON, Y002的输出映像寄存器接通,故Y003的输 出映像寄存器也接通

但是第二次的Y002又因X001=OFF, 其输出映像寄存器又断开 因此,实际的外部输出信息为Y002=OFF, Y003=ON

图 4-15

(a) 不正确的梯形图

(b) 正确的梯形图

• PLC 的运行是按照从上到下、从左到右的顺序执行,因此在编程时应注意编程的顺序。如图 4-17 所示的梯形图,(a)图和(b)图的执行结果不同。

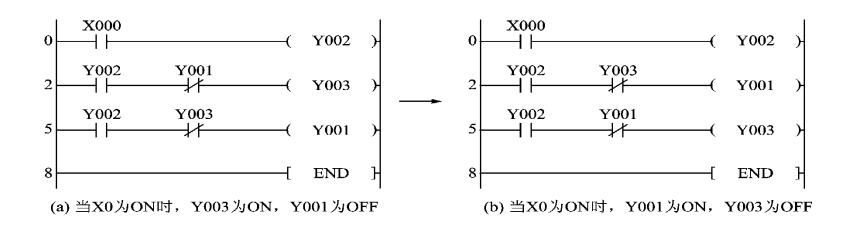


图 4-17

在继电器电路中,起停止作用的元器件如停止按钮、热继电器等一般使用其常闭触点。而采用 PLC 控制的梯形图中,常开/常闭触点的选用取决于该元器件与 PLC 输入端口连接的硬触点类型。反之,若输入电路中接的硬触点为常闭类型,则梯形图中对应的软触点应为常开触点。